Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge

Martí Gali *, Rafel Simó

Department of Marine Biology and Oceanography, Institució de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta 37–49, 08003 Barcelona, Catalonia, Spain

A R T I C L E I N F O

Article history:
Received 4 February 2010
Received in revised form 9 July 2010
Accepted 9 July 2010
Available online xxxx

A B S T R A C T

The distribution and cycling of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) were studied in the Greenland Sea and Arctic Ocean during July 2007. The concentration of these compounds was analyzed in vertical profiles of the top 100 m of the water column, with special emphasis on the sub-surface (1 m) and the immediate sub-surface waters (0.1 m). Seawater incubations were conducted in order to measure the rates of biological DMS cycling, as well as DMS photoysis rates. DMS ventilation rates were calculated from the hourly meteorological time series. Moderate concentrations of DMS (0.1 to 18.3 nM), DMSP (1.4 to 163.6 nM) and DMSO (9.0 to 84.7 nM) were found, considering that elevated biomasses of the haptophyte Phaeocystis pouchetii dominated in the study area. The overall situation was characterized by a tight coupling of biological DMS production and consumption, and a fast biological turnover of DMS (0.5 to 4 days). Bacterial consumption was the dominant sink for DMS, accounting for 9–73% of its loss in the upper mixed layer (UML). However, the shallow stratification encountered (mixed layer depth between 1.5 and 11 m) enhanced DMS photolysis, which accounted for 12–65% of the total DMS loss and, at some stations, became the dominant sink. DMS production followed phytoplankton biomass (and DMSP concentration) in surface waters, while bacterial DMS consumption was controlled by the depth of the UML (presumably through exposure to solar radiation). Ice melt drove surface stratification, regulating the entrainment of cells and materials into the upper layer from the more productive waters below, and eventually the fraction of DMS escaping to the atmosphere.

* Corresponding author.
E-mail address: mgali@icm.csic.es (M. Gali).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Dimethylsulfide (DMS) is the most abundant volatile sulfur compound in the surface ocean, and represents the major natural source of reduced sulfur to the global troposphere (Andreae and Crutzen, 1997). DMS is mainly produced by the enzymatic cleavage of its biological precursor dimethylsulfoniopropionate (DMSP), an abundant and widespread intracellular compound found in marine microalgae (Keller et al., 1989) and in other halophytic plants.

Research on DMS was first stimulated by the realization that this gas could account for the “missing” flux of sulfur from the oceans to the atmosphere that closes the budget of this essential element at the global scale (Lovelock et al., 1972), and was further encouraged when its involvement in a climatic regulatory feedback was proposed (Charlson et al., 1987). The latter authors hypothesized that the oxidation of DMS in the atmosphere would modify the albedo of clouds through the development of cloud condensation nuclei, thus altering the radiative budget over the oceans. If, in turn, DMS production by the marine microbiota was dependent on sea surface irradiance or temperature, the loop would be closed, establishing a negative plankton–climate feedback.

Since this hypothesis was postulated, our knowledge of the marine cycle of DMS and DMSP has rapidly increased, either from the physiological, ecological or the biogeochemical point of view. Several physiological functions have been proposed for DMSP: osmoregulator and cryoprotectant (Malin and Kirst, 1997; Welsh, 2000), methyl donor in metabolic reactions (Kiene et al., 1999), overflow mechanism for excess reducing power under conditions of unbalanced growth (Stefels, 2000), and the initial compound in a cascade of oxidations (involving its breakdown products DMS, acrylate, dimethylsulfoxide (DMSO) and methane sulfonic acid) that would prevent oxidative stress in cells (Sunda et al., 2002). Moreover, DMSP plays a critical role in marine microbial food webs, both as a chemical signal (Wolfe, 2000; Zimmer-Faust et al., 1996), and as the main carrier of reduced S and a significant carrier of C within and among trophic levels (Kiene et al., 2000; Simó et al., 2002).

DMSP production by phytoplankton displays a large variability, both across taxonomic groups (Keller et al., 1989) and within taxa depending on environmental conditions (Stefels et al., 2007). The cleavage of DMSP to DMS can proceed through different enzymatic pathways in the microbial food web, generally referred to as ‘DMSP lyases’. These are found in some algal and bacterial taxa, and can be
intra- or extracellular (Stefels and Dijkhuizen, 1996; Yoch et al., 1997). DMSP release to the dissolved phase, eventually promoting DMSO production, takes place upon grazing, viral lysis and phytoplankton autolysis (Simó, 2001). However, a competing, non-DMS-producing pathway for DMSP degradation ubiquitously exists, by which bacteria demethylate DMSP and eventually assimilate its sulfur (Kiene et al., 2000; Howard et al., 2006). The widespread uptake of DMSP by marine phytoplankton (Vila-Costa et al., 2006b) further complicates the picture.

Once in seawater, DMS has three dominant fates: ventilation to the atmosphere, photooxidation, and microbial (bacterial) consumption, which usually represents its major sink (Simó, 2004). In the latter two processes dissolved dimethylsulfide (DMSO) is one of the products (del Valle et al., 2007a; Kieber et al., 1996). Phytoplankton can also produce and release DMSO (Simó et al., 1998), but its possible physiological roles remain uncertain, although functions similar to those of DMSP have been proposed (Lee and de Mora, 1999; Sunda et al., 2002). In summary, DMSO is a major pool of organic sulfur in the ocean (Hatton et al., 2004; Simó and Vila-Costa, 2006), and its pivotal role in dimethylated sulfur cycling is progressively being unveiled.

Due to the complexity and number of interactions explained above, fully mechanistic models often fail to predict seawater DMS concentrations (Simó and Dachs, 2002). Comprehensive field studies, therefore, are of great importance as they provide further gains in understanding as well as the grounds against which hypotheses, laboratory results and model outputs can be validated. In the context of climate change, studies on the biogeochemical functioning and air-sea interactions of marine ecosystems already undergoing visible changes are very relevant, especially if existing data for the area under study are relatively scarce. The Arctic Ocean is predicted to be among the areas most affected by the ongoing climate change (IPCC, 2007; Johannessen et al., 2004; Moritz et al., 2002). In addition, in the late summer of 2007 the lowest ice extent was observed since the start of satellite records in 1979 (Stroeve et al., 2008). The aim of our study is to provide a better understanding of the distribution and cycling of dimethylated sulfur compounds in open-ocean and ice-margin waters during the Arctic ice melt, and the processes controlling the fraction of biologically produced DMS that ends up in the atmosphere.

2. Methods

2.1. Sample collection and CTD profiles

During the ATOS1 Arctic cruise, carried out in July 2007, a total of 49 stations were occupied, of which 17 were sampled for dimethylated sulfur compounds. Deck board incubation experiments were conducted in 8 of these. Most stations were located NW of the Svalbard archipelago, between 80° N–81° N and 5° E–20° E, except for the initial stations that covered the transect from the north of Iceland to NW Svalbard, across the East Greenland Current (EGC) and the Fram Strait.

Samples for DMS(P,O) profiles were collected every morning at 8 am from 5 depths in the top 200 m of the water column, using Niskin bottles attached to a CTD rosette (Seabird SBE 911). Silicone tubing was used to fill 120 ml glass vials to the top (without head space), allowing some overflow and taking care to avoid bubbling. An additional Niskin bottle was deployed to sample at 1 m depth. At some stations, an extra sample from 0.1 m depth was taken from a Zodiac inflatable boat by pumping seawater through acid-cleaned Teflon tubing to a 0.25 L Teflon bottle. All bottles were cleaned with hydrochloric acid before the cruise started, and from then on they were rinsed several times with MQ water after each use, and with sample seawater before they were filled.

At 4 stations in the Fram Strait area, DMSP and DMSO were also analyzed in sea ice samples obtained with a coring device (Mark III, Kovacs Enterprise Inc.). Only the top and bottom 20 cm of the ice cores (which were 1 m long and 7.25 cm in diameter) were used after melting overnight in acid-washed Teflon (PFA) bags at room temperature. The ice melt water was sampled with a syringe from the Teflon bags and analyzed like seawater samples.

In addition to temperature, conductivity (salinity) and pressure (depth), the variables measured in CTD profiles included fluorescence of chlorophyll a, beam attenuation (cₚ) at 660 nm (a proxy for total biogenic particle mass, i.e. particulate organic carbon) and turbidity. Vertical profiles were binned and averaged in 1 m intervals. Density (sigma-t) was calculated from temperature and salinity with the built-in algorithm of the Ocean Data View software (Schlitzer, 2008). The mixed layer depth (MLD) was defined as the maximum depth before a step in density bigger than 0.02 kg m⁻³ was encountered. At all stations (except Stn. 1), shipborne CTD profiles of the uppermost water column were checked against the more reliable temperature and salinity profiles obtained from the zodiac boat, which covered the 3 upper meters of the water column.

Both fluorescence and extracted Chl a are poor indicators of algal biomass, for they are affected by photoadaptation and nutrient stress (Behrenfeld and Boss, 2003). Consequently, we chose beam attenuation (cₚ) as our reference variable for planktonic microbial biomass. Even though cₚ also accounts for heterotrophic bacterial biomass (Oubelkheir et al., 2005), the proportion of autotrophic biomass is expected to increase as we move towards eutrophic conditions (Gasol et al., 1997) and will probably dominate during strong phytoplankton bloom conditions.

2.2. Analysis of sulfur compounds

Dimethylated sulfur compounds were analyzed by purging, cryotrapping and sulfur-specific gas chromatography followed by flame photometry (Simó et al., 1996). The detection limit was ca. 3 pmol S. To analyze DMS, 3-5 ml of seawater were gently filtered through a GF/F syringe filter and immediately sparged in a crimp glass vial. A larger volume of sample (40 ml) was stored in crimp glass vials, where two pellets (45 mg each) of NaOH were added. DMSO was analyzed within 1 h after collection. Total DMSP (DMSpt) was analyzed the following day, except for a few samples that were run on land within 2 months after the cruise had finished. Total DMSP (DMSOt) was analyzed within a few months in the same vials, after purging with N₂ the DMS evolved from alkaline DMSP cleavage. DMSO was measured as DMS by reduction with NaBH₄, added in its cobalt-doped form to skip the neutralization step (Simó and Vila-Costa, 2006). All samples were analyzed in duplicate, and the median coefficient of variation between replicates was 5.2, 6.3 and 3.5% for DMS, DMSpt and DMSOt respectively.

The attempts made to measure dissolved DMSP (DMSpd) by the small-volume gravity drip filtration method (Kiene and Slezk, 2006) repeatedly failed, due to the presence of the colony-forming haptophyte Phaeocystis. The colonies and even the solitary cells of this small flagellate easily break down upon filtration, releasing the intracellular content (Schoemann et al., 2005). For this reason, a prefiltering step through a 50 μm mesh was carefully applied when filling the vials destined for DMS analysis. This step prevents artifacts in the measurement of DMS, caused by the elevated concentrations of DMSP and DMSp lysates in solution.

2.3. Biological process incubations

For the determination of gross DMS production by the whole microbial community and bacterial DMS consumption, water from 1 m depth and from the depth of the fluorescence maximum was incubated in the dark at the in situ surface temperature ± 1 °C. For that purpose, amber glass bottles (2.9 L) were directly filled from the Niskin bottles. One unamended bottle was incubated as a control, along with a second bottle that was amended with ca. 250 nM of...
dimethyldisulfide (DMS), an effective inhibitor of bacterial DMS consumption (Wolfe and Kiene, 1993; Simó et al., 2000). The duration of the incubations was around 20 h, during which the inhibitory effect generally held. Otherwise, only the part of the incubation with a linear DMS accumulation was used for the calculations. The slope of the linear regression between DMS concentration and incubation time in the control bottles provided the net DMS production rate. The slope of the DMS amended treatment yielded the rate of the community gross DMS production. The bacterial DMS consumption rate was obtained as the difference between gross and net DMS production rates. DMSpt was also monitored in the control incubations. At Stn. 42, surface seawater was also incubated in the light under the same irradiance as the photochemistry incubations using 2.3 L Teflon bottles (see Results, Dark versus light incubation).

2.4. DMS photolysis

2.4.1. Incubation setup

DMS photolysis rates were measured at stations 20, 26, 39 and 42 in either 75 ml quartz flasks or 250 ml Teflon bottles (Stn. 42) incubated on board. Seawater from 1 m depth was gravity filtered through GF/F, and then syringe filtered through 0.2 μm Nylon membranes. DMS was added to concentrations of 20–70 nM in order to ensure that photooxidation of DMS was detectable within incubation times, and the water was transferred to the bottles leaving no head space. Duplicate light and dark bottles (the latter wrapped in aluminum foil) were kept for 7–12 h in a bath with running seawater from the ship’s underway intake, while solar radiation and bath temperature were recorded continuously. The incubation tank was covered with a neutral screen that attenuated 52% of the solar radiation in the ultraviolet (UV) and in the photosynthetically active radiation (PAR) regions.

2.4.2. Rate constant calculation

The photolysis rate constant (Kphoto, d⁻¹) was calculated assuming a pseudo first-order kinetics (Brimblecombe and Shooter, 1986; Kieber et al., 1996; Brugger et al., 1998; Hatton, 2002). Concentrations from duplicate bottles were averaged, and final concentrations in the light were corrected for any changes happened in the dark. The natural logarithms of initial and final DMS concentrations were plotted against time after dark correction, and the slope was taken as the Kphoto. A correction factor was applied at Stn. 42 to account for the slightly lower transmittance of Teflon bottles in the UV range compared to quartz.

2.4.3. CDOM measurements

Absorption spectra of chromophoric dissolved organic matter (CDOM) were measured in the GF/F filtrates used for DMS photolysis before and after the incubations. Spectrophotometric scans (280 to 800 nm) were performed in a 1 cm pathlength (r) quartz cuvette, and spectral absorption coefficients were calculated from spectral absorbance (aCDOMλ) after subtracting the absorbance of MQ water, as aCDOMλ=2.303 ACDOMλ · r⁻¹. Analysis of 0.2 μm filtrates showed minor differences with GF/F filtrates. The spectral slope of CDOM (S300–400) was computed from the linear regression between the natural logarithm of aCDOMλ and wavelength, in the range of 300–400 nm. In some samples, marked absorption peaks occurred around 330 nm, which were attributed to mycosporine-like aminocids. In those occasions, the peaks were excluded from the linear regression.

2.5. Upper mixed layer-averaged solar radiation and optical calculations

2.5.1. Attenuation coefficients (Kd) and UML-averaged solar radiation

Diffuse attenuation coefficients for downward radiation (Kd) were calculated as the slope of the linear regression between the natural logarithm of downwelling irradiance and depth: hln(Ed(z,λ)) = Kd · z.

Only the UML, or alternatively, a deeper and optically homogeneous surface layer, were used for Kd calculation, so that the r² of the regression was above 0.98 at all stations considered. The minutely time series from the ship’s meteorological station was used to calculate the mean irradiance during the 24 h prior to sample collection. This value was converted to subsurface irradiance (Ed,sub) with a 1% surface reflectance applied, based on mean wind speed and solar zenith angle (Kirk, 1994), and then the average depth-integrated solar radiation in the UML was calculated (following Vallina and Simó, 2007): Ed,sub = (Ed,sub/ (Kd,UML · MLD)) · (1–exp(Kd,UML · MLD)).

2.5.2. Average spectral irradiance in photolysis experiments

A PAR–UV radiometer (Biospherical PUV 2500) was placed in the center of the incubation tank to keep a continuous record of the solar radiation reaching the samples. Downwelling cosine irradiance was measured at a frequency of 5 s⁻¹ in six bands in the UV region (centered at 305, 313, 320, 340, 380 and 395 nm) and one integrated band in the visible region (PAR). The mean spectral irradiance during the incubation was obtained for each UV band, and the total energy received in the UVB and UVA was computed as the integral of mean spectral irradiance over a given spectral interval and time.

The time series from the meteorological station of the ship was used to calculate the time-integrated total irradiance reaching the samples after successively crossing the neutral screen (52% attenuation) and the water surface (10% reflectance). The Kphoto obtained in bottle experiments were converted to in situ mixed layer photolysis rate constants (Kphoto,UML) according to the following steps: first, a subsurface in situ rate constant was obtained as the product of the experimental Kphoto by the average in situ subsurface irradiance divided by the averaged incubation irradiance; second, a depth-averaged Kphoto,UML was calculated in the same manner as Ed,sub, but assuming that Kphoto decayed exponentially with the Ks of 340 nm radiation. Our calculations indicated that 340 nm was the wavelength at which maximum DMS photolysis occurred in surface waters, according to the product of light absorption (CDOM spectra) by the apparent quantum yield of DMS photolysis obtained by Deal et al. (2005) in the Bering Sea.

2.6. Sea–air DMS fluxes

Hourly DMS fluxes were calculated using the subsurface DMS concentration (1 m depth, and 0.1 m depth when available) and the hourly wind speeds from the ship’s meteorological station, and were then averaged on a daily basis. The parameterization of Nightingale et al. (2000) was used to obtain k0,DMS, the transfer or piston velocity of DMS (cm h⁻¹): k0,DMS = (5.88 u10⁻¹ + (1.49 u10⁻¹)) · Sc⁻¹/², where u10 = wind speed at 10 m height (m s⁻¹); Sc = Schmidt number of DMS, calculated from the sea surface temperature according to Saltzman et al. (1993). Emission fluxes (F(DMS)) were then obtained as the product of DMS in seawater (Cw, which drives the flux) and the transfer velocity: F(DMS) = 0.24 k0,DMS · Cw. Finally, ventilation rate constants in the UML (kvent,UML) were obtained as the surface flux divided by DMS concentration and MLD.

2.7. Statistical analysis

2.7.1. Grouping of stations

Vertical profiles of CTD variables were used to construct a classification of the 17 stations where sulfur data were available. Briefly, profiles of each variable between 0 and 30 m were grouped using cluster analysis (cityblock, cutoff = 1). The resulting groups had characteristic depth profiles of the selected variable. This rendered as many different classifications as variables used. However, salinity and cp showed a strong agreement, and were therefore used as the defining criteria (see Results). The average profiles (±SE) of representative CTD variables were calculated for each group.
2.7.2. Vertical profiles

A correlation matrix (Pearson correlation) allowed the exploration of the relationships between sulfur compounds and biotic and abiotic parameters measured from CTD casts. In addition, stepwise regression was performed in order to find the most significant predictors for DMS, DMSPt and DMSOt. Stepwise regression was judged a convenient technique to prevent collinearity artifacts in the multiple regression, that is, artifacts caused by highly correlated variables within the predictor matrix. The initial model included no terms, and the entrance tolerance for additional terms was \(p < 0.05 \).

2.7.3. Surface distribution and biological cycling

Surface distribution of dimethylated sulfur compounds, planktonic biomass and related abiotic parameters, and biological sulfur cycling were explored by means of correlation analysis. Given the low number of data points available (<20), the non-parametric Spearman correlation method was used.

3. Results

3.1. Oceanographic setting

3.1.1. Physical features

The transect from Iceland to the north of Svalbard archipelago is characterized by the interaction between warm and salty Atlantic Water (AW), which flows northwards forming the West Svalbard Current (WSC), and the southwards overflow of Arctic Water through the Fram Strait (between Svalbard and Greenland) and along the Greenland shelf, forming the East Greenland Current (EGC; Rudels et al., 2005; Fig. 1A, B). In the Fram Strait and on the Yermak Plateau (NW of Svalbard) mixing between these water masses occurs, and recirculated AW is entrained.
3.1.2. Classification of the stations

According to vertical profiles of salinity and its grouping with cluster analysis (see Methods), stations were divided in AW and PSW (Fig. 1, Table 1). Additionally, the latter group included a subgroup of stations that showed a stronger influence of ice melt, which will be referred to as PSWi. These groups showed distinct vertical profiles of physical variables, but also a distinct pattern of biomass distribution throughout the cruise: the MLD ranged from 1.5 to 11 m (mean of 6 m). Due to the vertical distribution of microorganisms, the UML was more transparent than the waters beneath. The vertical diffuse attenuation coefficient for downwelling PAR (Kd) was on average 0.15 m−1 (with values spanning between 0.11–0.29 m−1). Light extinction in the UML was governed by biogenic materials, as demonstrated by the positive correlation between Kd and cp (r2 = 0.59, p < 0.001, n = 17). Consequently, the differences in surface biomass translated into different PAR and UV transmissions between AW and PSW (Table 1). Overcast and misty skies predominated in the beginning and the end of the cruise, so that a low mean surface irradiance of 180 W m−2 was recorded (total solar spectrum). However, the combination of very shallow and moderately clear mixed layers with 24 h of continuous sunlight rendered notable daily UML-radiation (respectively) in most stations.

3.1.3. Biological features

Elevated productivity and biomass were widespread features throughout the cruise. Compared to vertical profiles of either fluorescence or Chl a, cp profiles did not display such a sharp decrease in biomass towards the surface (Fig. 1E). Biomass at the cp maximum was around 1 m−1 at AW and PSWi stations, which approximately corresponded to a chlorophyll concentration of 4 μg L−1. Biomass in the UML was lower at PSW and PSWi stations (<0.5 m−1, chlorophyll < 1 μg L−1) while it remained high (>0.5 m−1, chlorophyll >1 μg L−1) at those stations less influenced by ice (AW). These values are rather typical of the transition between bloom and post-bloom conditions in this area and time of the year (Salska, 2004). Phytoplankton biomass was generally dominated by the haptophyte Phaeocystis pouchetii, although dinoflagellates, diatoms and other nanoflagellates made significant contributions at some stations (Calbet et al., submitted for publication). A highest proportion of heterotrophic biomass was found at ECC stations, supporting our view of the temporal–spatial progression of the bloom. P. pouchetii, like its close relatives P. globosa and P. antarctica, is known for its ability to form quasi-monospecific blooms, and for the production of a mucilaginous polysaccharide matrix in which cells are embedded, forming large colonies (Schoemann et al., 2005). A relevant feature of bloom-forming Phaeocystis species is their elevated intracellular DMSP concentration (generally well above 100 mM) and DMSP lyase activity (Stefels and Van Boekel, 1993; Stefels and Dijkhuizen, 1996), which can give rise to elevated concentrations of DMS and acrylate in seawater.

3.1.4. Radiation climate in the UML

As a result of ice thaw (together with light winds) a strong and shallow stratification of the surface water column was found during our cruise: the MLD ranged from 1.5 to 11 m (mean of 6 m). Due to the vertical distribution of microorganisms, the UML was more transparent than the waters beneath. The vertical diffuse attenuation coefficient for downwelling PAR (Kd) was on average 0.15 m−1 (with values spanning between 0.11–0.29 m−1). Light extinction in the UML was governed by biogenic materials, as demonstrated by the positive correlation between Kd and cp (r2 = 0.59, p < 0.001, n = 17). Consequently, the differences in surface biomass translated into different PAR and UV transmissions between AW and PSW (Table 1). Overcast and misty skies predominated in the beginning and the end of the cruise, so that a low mean surface irradiance of 180 W m−2 was recorded (total solar spectrum). However, the combination of very shallow and moderately clear mixed layers with 24 h of continuous sunlight rendered notable daily UML-averaged irradiances (mean 119, range 43–217 W m−2). These values fall in the mid-upper range of values found in the world oceans (Vallina and Simó, 2007). According to the calculated vertical attenuation coefficients for downward irradiance, the UML was exposed, on average, to >10% and >1% of subsurface UVA and UVB radiation (respectively) in most stations.

3.2. Dimethylated sulfur concentrations

DMSPt concentrations in the study area closely followed phytoplankton biomass, generally peaking at the cp maximum (Fig. 2, and see Matrai et al., 2007). In the upper 40 m of the water column (roughly, the
euphotic zone) DMSPt was 65.5 ± 50 nM (average ± SD), with a maximum of 163 nM, and below that depth it was never above 15 nM. DMS concentrations had a vertical pattern different from that of its precursor compound. It generally decreased from the subsurface to the deepest waters analyzed (85 m), although at some stations a second DMS peak was found at the depth of the cp maximum. In the euphotic zone, DMS was typically around 5.3 ± 4 nM, reaching up to 18.3 nM. Below 40 m depth, DMS concentrations rarely exceeded 1 nM. Despite varying in a narrower range than the preceding compounds, DMSOt also exhibited a clear vertical pattern, with a mean of 51 ± 13 nM in surface waters and down to 5 m depth, and 27 ± 10.5 nM below that depth. DMSOd accounted for 58 ± 8% of DMSOt in surface waters where it was measured (n=9, data not shown). In the context of Phaeocystis blooms, the DMSPt and DMS concentrations we report fall in the mid-low range (Stefels et al., 2007). To our knowledge, no review exists on DMSO pools and dynamics during Phaeocystis blooms. Integrating vertically the concentrations in the euphotic zone, we obtain that DMSPt, DMSOt and DMS accounted for 67 ± 5%, 28 ± 5% and 5 ± 2% of the total dimethylated sulfur, respectively. Due to shallow mixing, only a minor fraction of the sulfur pools was in the UML: approximately 20% of DMS and DMSOt, and only 10% of DMSPt.

3.2.2. Surface concentrations and sea ice
The highest spatial variability for the three sulfur compounds was encountered in subsurface waters (0.1 and 1 m depth, Fig. 3). DMS concentrations spanned one order of magnitude (1.5 to 18.3 nM), and were slightly lower at 0.1 m (mean 5.3 nM) compared to 1 m (mean 6.3 nM). DMSPt concentrations had an even broader span (5.6 to 163.6 nM), but were not different at 1 m or 0.1 m (overall mean around 70 nM). DMSOt concentrations varied between 19 and 85 nM, with a mean of 51 nM and slightly more disperse values at 0.1 m. Consistent with the differences found in surface biomass between station types, surface DMSPt was clearly higher at AW stations (102.5 ± 31.3 nM) than those at PSW and PSWi (18.8 ± 6.8 nM). However, no significant differences were found for DMS and DMSOt between station types (Fig. 3).

DMSOt (range of 7.9–12.2 nM) but no DMSPt were found in snow and surface ice, which supports an atmospheric origin of DMSO (Andreae, 1980). At two stations, higher amounts of DMSPt and DMSOt were found in bottom ice, with maximum concentrations of 90 and 24 nM respectively. In this case, a biological origin was feasible, but the concentrations were very low compared to the μM levels reported by Levasseur et al. (1994), or the hundred nM levels reported by Bouillon et al. (2002). Our results indicate that sea ice was not a major source of dimethylated sulfur in the region at that time of the year, and therefore they will not be discussed.

3.3. Biological turnover of DMS
3.3.1. Production and consumption rates
DMDS amended incubations in all cases caused accumulation of DMS over that in non-amended incubations (Fig. 4). Gross DMS production rates at the surface (1 m) ranged between 1.4 nM d⁻¹ (Stn. 1) and 14.8 nM d⁻¹ (Stn. 42, Table 2). The stations belonging to the PSW group (EGC) showed the lowest gross production rates (<1.5 nM d⁻¹), while in strongly blooming waters and in the vicinity of the ice (AW and PSWi) gross production rates were higher (mean of 6.4 nM d⁻¹). At the
3.3.2. Consumption and production rate constants

The rate constants (K) of the biological process incubations were calculated as the process rate (nM d\(^{-1}\)) divided by the initial DMS concentration (nM). The Ks of gross DMS production (K\(_{gp}\)) in both surface and fluorescence maximum samples lay between 0.30 d\(^{-1}\) (Stn. 3) and 2.2 d\(^{-1}\) (Stn. 19 surface and Stn. 12 fluorescence maximum, Table 2). DMS consumption rate constants (K\(_{bc}\)) were in the same range, from 0.14 d\(^{-1}\) (Stn. 26 surface) to 2.2 d\(^{-1}\) (Stn. 19 surface). The mean rate constants in surface samples were 1.2 d\(^{-1}\) for production and 0.9 d\(^{-1}\) for bacterial consumption, while at the fluorescence maximum the mean Ks were 1.3 and 1.7 d\(^{-1}\) for production and consumption respectively (Table 2).

3.3.3. Dark versus light incubation

At Stn. 42, dark and light incubations were performed with the same surface water sample, to investigate whether solar radiation affected biological production and consumption. Duplicate bottles were incubated with the following treatments: DMDS-light, control-light and control-dark. In incubations kept under the sunlight, DMS evolution was corrected using the photochemical rate constant obtained from parallel photochemistry incubations. Net biological DMS production in the light (1.9 nM d\(^{-1}\)) was clearly higher than in the dark (−2.3 nM d\(^{-1}\)), but the lack of dark DMDS incubations obscures the interpretation of these results (see Discussion).

3.4. DMS photolysis

The rate constants of DMS photolysis in photochemistry experiments ranged from 0.50 d\(^{-1}\) (Stn. 42) to 1.14 d\(^{-1}\) (Stn. 20), with a mean of 0.81 d\(^{-1}\). Once extrapolated to the whole UML, the photolysis rate constant (K\(_{photo\text{--}UML}\)) was on average 0.72 d\(^{-1}\), equivalent to a mean in situ photolysis rate of 3 nM d\(^{-1}\) (Table 3).

3.5. Sea–air DMS flux

3.5.1. Sea surface fluxes

DMS emission fluxes at the sea surface varied between 0.5 μmol m\(^{-2}\) d\(^{-1}\) (Stn. 19) and 22.5 μmol m\(^{-2}\) d\(^{-1}\) (Stn. 42), with a mean flux of 6.5 μmol m\(^{-2}\) d\(^{-1}\). Volumetric ventilation rates in the ML ranged from 0.07 nM d\(^{-1}\) (Stn. 19) to 2.77 nM d\(^{-1}\) (Stn. 36), averaging 1.12 nM d\(^{-1}\). The corresponding range of ventilation rate constants (K\(_{vent\text{--}UML}\)) was 0.056–0.69 d\(^{-1}\) (mean 0.23 d\(^{-1}\)).

4. Discussion

4.1. Factors controlling dimethylated sulfur compound concentrations

4.1.1. Vertical profiles

The statistical analysis of dimethylated sulfur compounds concentration together with CTD variables revealed a different pattern for each of the compounds (Table 4). DMSP\(_t\) was strongly correlated to indicators of algal biomass (especially to C\(_b\)) and negatively correlated with depth. The stepwise regression indicated that C\(_b\) was the only predictor worth including in the regression model, that is, with a slope significantly different from zero at the 0.05 level (r\(^2\) = 0.67, p < 10\(^{-5}\)). Forcing the addition of the next “most significant” term in the model (fluorescence) increased the variance explained only to 70% (r\(^2\) = 0.70). The high predictability of DMSP\(_t\) from C\(_b\) probably stemmed from the abundance of P. pouchetii during our study.

Intracellular DMSP concentrations in Phaeocystis are roughly 10 to 100 times higher than in diatoms, and in the same order of magnitude than in dinoflagellates (Hatton and Wilson, 2007; Stefels et al., 2007). The dominance of Phaeocystis and the elevated DMSP\(_t\):Chl a during our cruise (38.6 nmol/μg), a value in the upper edge of those found in Phaeocystis blooms (Stefels et al., 2007), suggests that Phaeocystis was the dominant species in terms of its contribution to the DMSP\(_t\) pool.
Assuming that almost all DMSP was particulate (after Kiene and Slezak, 2006), the DMSP:cp ratio can be taken as a biomass-specific DMSP concentration, that is, a proxy for intracellular DMSP concentration. Even more, the evidence of low feeding rates on Phaeocystis by zooplankton, supported by field data from our cruise (Calbet et al., submitted for publication) and reported in the literature (review by Nejstgaard et al., 2007), suggests that most DMSP was algae-bound. In the case of DMS, only correlations with cp and DMSPt (positive) and depth (negative) were significant individually. DMSPt was the only predictor accepted in the stepwise regression model ($r^2 = 0.42$, $p < 10^{-4}$), and forcing the addition of depth in the predictor matrix (the second most significant term) increased the explained variance only to 46%. Not surprisingly, DMS was less predictable than its precursor DMSPt, due to the greater weight of physical forcing on its cycling (Simó and Pedrós-Alió, 1999). DMSPt concentrations and, most important, the DMSPt:cp ratio, were highest in surface waters (del Valle et al., 2007a, 2009). In the stably stratified surface waters of the Arctic, lower water density implies a higher exposure to solar irradiation in the mid or long term. In fact, a correlation existed between the strength of the stratification and DMSOt concentrations. Finally, DMSOt concentrations could be interpreted in terms of bloom phase, with higher values being associated with early bloom stages: at Stn. 9, a situation of early bloom was found, DMSOt concentrations integrated over the top 100 m were 40% lower than at Stn. 1 or 20.

4.1.2. Surface concentrations

The amount of DMSpt, DMS and DMSot at the immediate subsurface (0.1 m) compared to 1 m depth was very similar, with a ratio that approached 1, on average, for all three compounds. The existing variability, however, can tell us about the factors controlling each of the sulfur species. An overall higher variability was found for DMS (34% of the range about the mean) than for DMSPt (24%) or DMSOt (10%), indicating a more important role of small-scale variability. The amount of DMSot accumulation. Production of dissolved and particulate DMSO through light-mediated biotic and abiotic processes is relatively well documented. Those processes include (a) DMSO production due to DMS photochemistry (Hatton, 2002; Kieber et al., 1996) and algal DMSP and DMS oxidation (del Valle et al., 2007b; Hatton and Wilson, 2007; Simó et al., 1998; Sunda et al., 2002), and (b) bacterial DMS oxidation, with a tendency towards higher DMSod yields in the UML, where lower bacterial DMS consumption rates normally occur, and higher DMS carbon utilization and sulfate production in deeper waters (del Valle et al., 2007a, 2009). In the stably stratified surface waters of the Arctic, lower water density implies a higher exposure to solar radiation in the mid or long term. In fact, a correlation existed between the strength of the stratification and DMSOt concentrations. Finally, DMSOt concentrations could be interpreted in terms of bloom phase, with higher values being associated with late bloom stages: at Stn. 9, a situation of early bloom was found, DMSOt concentrations integrated over the top 100 m were 40% lower than at Stn. 1 or 20.

Table 2

Gross DMS production (GP) and biological DMS consumption (BC) rates for the UML (1 m) and fluorescence maximum samples, with the corresponding rate constants (K_{gp} and K_{bc}). The standard error of the slope (or the propagated SE when required) is shown in parentheses.

<table>
<thead>
<tr>
<th>Station</th>
<th>Sample depth (m)</th>
<th>GP rate (nM d$^{-1}$)</th>
<th>BC rate (nM d$^{-1}$)</th>
<th>K_{gp} (d$^{-1}$)</th>
<th>K_{bc} (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UML (1 m depth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>2.9</td>
<td>0.32</td>
<td>0.21</td>
<td>0.70</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.3</td>
<td>0.30</td>
<td>0.15</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>6.8</td>
<td>6.6</td>
<td>0.80</td>
<td>0.07</td>
<td>0.78</td>
</tr>
<tr>
<td>12</td>
<td>6.9</td>
<td>1.6</td>
<td>1.9</td>
<td>0.04</td>
<td>0.45</td>
</tr>
<tr>
<td>19</td>
<td>2.6</td>
<td>2.5</td>
<td>2.6</td>
<td>0.16</td>
<td>2.2</td>
</tr>
<tr>
<td>20</td>
<td>7.6</td>
<td>6.1</td>
<td>1.8</td>
<td>0.03</td>
<td>1.5</td>
</tr>
<tr>
<td>26</td>
<td>2.5</td>
<td>0.4</td>
<td>0.95</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>42</td>
<td>ND</td>
<td>17.1</td>
<td>ND</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>42 light</td>
<td>14.8</td>
<td>12.9</td>
<td>1.6</td>
<td>0.05</td>
<td>1.4</td>
</tr>
<tr>
<td>Mean</td>
<td>5.5</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fluorescence maximum

<table>
<thead>
<tr>
<th>Station</th>
<th>Sample depth (m)</th>
<th>GP rate (nM d$^{-1}$)</th>
<th>BC rate (nM d$^{-1}$)</th>
<th>K_{gp} (d$^{-1}$)</th>
<th>K_{bc} (d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>0.62</td>
<td>3.90</td>
<td>0.3</td>
<td>0.57</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>0.41</td>
<td>0.82</td>
<td>0.24</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>5.2</td>
<td>5.1</td>
<td>1.8</td>
<td>0.23</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>12.7</td>
<td>16.8</td>
<td>2.3</td>
<td>0.48</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>10.6</td>
<td>10.4</td>
<td>1.7</td>
<td>0.18</td>
</tr>
<tr>
<td>Mean</td>
<td>5.9</td>
<td>7.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Integrated irradiance during deck board incubations, CDOM characteristics (absorption coefficient at 300 nm and spectral slope in the 300–400 nm range), and K_{photo} obtained from the experiments and calculated for the entire UML. The sky was clear at Stns. 20 and 26 and heavily overcast at Stns. 39 and 42. Incubations generally started at 14:00 and ended between 21:00 and 02:00.

<table>
<thead>
<tr>
<th>Station</th>
<th>Experiment</th>
<th>UVB (kJ m$^{-2}$)</th>
<th>UVA (kJ m$^{-2}$)</th>
<th>PAR (mol photons m$^{-2}$)</th>
<th>$a_{CDOM,300}$ (m$^{-1}$ nm$^{-1}$)</th>
<th>$S_{300–400}$ (nm$^{-1}$)</th>
<th>K_{photo} (d$^{-1}$)</th>
<th>K_{photo}/UVR (m2 kJ$^{-1}$ d$^{-1}$)</th>
<th>UML</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5.0</td>
<td>160</td>
<td>6.9</td>
<td>0.94</td>
<td>0.010</td>
<td>1.14</td>
<td>0.007</td>
<td>0.40</td>
<td>1.05</td>
</tr>
<tr>
<td>26</td>
<td>5.6</td>
<td>200</td>
<td>8.7</td>
<td>0.38</td>
<td>0.023</td>
<td>0.69</td>
<td>0.003</td>
<td>0.44</td>
<td>1.04</td>
</tr>
<tr>
<td>39</td>
<td>1.8</td>
<td>59</td>
<td>2.3</td>
<td>0.43</td>
<td>0.026</td>
<td>0.93</td>
<td>0.015</td>
<td>0.35</td>
<td>0.55</td>
</tr>
<tr>
<td>42</td>
<td>2.6</td>
<td>85</td>
<td>3.2</td>
<td>0.58</td>
<td>0.014</td>
<td>0.5</td>
<td>0.006</td>
<td>0.29</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Please cite this article as: Galí, M., Simó, R., Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge, Mar. Chem. (2010), doi:10.1016/j.marchem.2010.07.003
Indirect evidence that solar radiation was the main factor accounting for others much of the DMS expected from its precursor had vanished. The higher concentrations of algal biomass and DMSPt in less isolated base of the mixed layer (r = 0.68, p < 10^-3) illustrating the effect of ice melting. In turn, both variables were negatively correlated with the density gradient at the base of the mixed layer (r = -0.77, p < 10^-4, and r = -0.5, p < 0.05, for salinity and temperature, respectively), which means that ice melting controlled the strength of surface stratification. In addition, plankton biomass (c_p) varied inversely with salinity (r = -0.87, p < 10^-6) and the density gradient (r = -0.47, p < 0.05). This illustrates that recent meltwaters were not a good growth medium for DMSP producers (Phaeocystis), an inference supported by measurements of primary production and phytoplankton cells viability done in the same cruise (Duarte et al., in preparation; Lasternas and Agustí, in revision). Indeed, surface DMSPt and c_p were highly correlated (r = 0.87, p < 10^-6). The higher concentrations of algal biomass and DMSPt in less isolated surface waters suggest that the DMSP stock at the surface was fed by living cells and detrital algal material entrained from waters below.

In the case of DMS, the picture was somewhat different. It seemed to follow DMSPt and biomass concentrations at some stations, while at others much of the DMS expected from its precursor had vanished. Indirect evidence that solar radiation was the main factor accounting for the “missing” DMS at those stations is provided in Fig. 5. If we examine the relationship between the DMS:DMSPt ratio and the mean solar irradiance during the 24 h previous to sampling, a significant negative correlation exists (r = -0.82, p < 10^-3). Further evidence is found in the fine-scale DMS vertical gradient (previously normalized to the mean surface DMS concentration to account for the more pronounced gradients found at high-DMS stations), which also appears related to the previous surface irradiance (r = -0.73, p < 0.01, after removing one outlier). Generally the DMS concentrations increased towards the surface when the daily mean irradiance was below 200 Wm^-2. Conversely, if the daily mean irradiance was greater, then the DMS concentrations decreased towards the surface, indicating that DMS photolysis was able to counteract biological DMS production. Finally, lower UML-averaged DMS concentrations were associated with higher UML-averaged irradiances (r = -0.60, p < 0.05). Adding wind speed did not help explain more of the variance of the DMS variables, indirectly indicating an overall minor impact of sea-air flux in DMS cycling compared to solar radiation.

Surface DMSOt displayed less variability across stations than its precursor compounds (Fig. 3). It was correlated to DMS (r = 0.58, p < 0.05) but not to DMSPt (r = -0.22, p > 0.05) or c_p (r = 0.02, p > 0.05). This points to DMS photochemistry and bacterial DMS consumption as the main sources of DMSOt, with algal production playing a secondary role. With a mean UML DMS of 5.5 nM, a mean Kphoto,UML of 0.7 d^-1 with a DMSOd yield of 50%, and a mean Kbc of 0.9 d^-1 with a DMSOd yield of 20% (yields taken from del Valle et al., 2009), the DMSOd produced daily by DMS photochemistry (2 nM d^-1) would be twice that produced by microbial DMS oxidation. This would imply a turnover time of 10 d for the mean surface DMSOd of 30 nM in our study area. These figures are in quite good agreement with those presented in del Valle et al. (2009) for the

Ross Sea. Particularly, the calculated DMSOd turnover time falls between those found for the early and late phase of the Phaeocystis antarctica bloom in that work. Surprisingly, we found a negative correlation between DMSOt and the UML-integrated irradiance (r = -0.67, p < 0.01). This seems to contradict the statements made above, but could also indicate a solar radiation induced removal of DMSO. Our knowledge of DMSO removal pathways in oceanic waters is too poor to make better inferences.

4.2. Factors controlling biological DMS cycling

Biological DMS cycling was very fast, with turnover times as short as half a day encountered both in the UML and in the fluorescence maximum. On average, biological turnover occurred in 2.2 d and was never longer than 4 d (except at Stn. 26, where an extremely low bacterial consumption rate was observed). This range is very similar to that found by Wolfe et al. (1999) in the Labrador Sea. In the following paragraphs we will examine what factors controlled the rates and rate constants (Ks) of biological DMS cycling, with emphasis on those taking place in the UML.

DMSP cleavage in our study area was probably dominated by algal lyases. Phaeocystis species have been shown to dominate DMSP lyase activity in blooms where they occur in large numbers (Stefels et al., 1995). In the Labrador sea, Cantin et al. (1999) found that most DMSP lyase activity was found in the 2 – 11 and >20 μm size fractions, although they could not refute that part of the DMSP lyase activity was due to attached bacteria. We could not quantify how much of the

<table>
<thead>
<tr>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation table for oceanographic variables and sulfur compounds in vertical profiles. The values are Pearson correlations, and are marked in bold when significant (p < 0.01). The maximum number of X-Y pairs available has been used in each variables combination. N is 61, 54 and 51 for DMS, DMSPt and DMSOt respectively.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Depth</th>
<th>Temperature</th>
<th>Salinity</th>
<th>Sigm-t</th>
<th>Sigma-t gradient</th>
<th>O2</th>
<th>cp</th>
<th>Fluorescence</th>
<th>DMSP</th>
<th>DMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSOt</td>
<td>-0.65</td>
<td>-0.25</td>
<td>-0.71</td>
<td>0.76</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
<td>0.27</td>
</tr>
<tr>
<td>DMS</td>
<td>-0.47</td>
<td>0.19</td>
<td>-0.97</td>
<td>0.23</td>
<td>0.04</td>
<td>0.09</td>
<td>0.52</td>
<td>0.16</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>DMSPt</td>
<td>-0.40</td>
<td>0.24</td>
<td>-0.04</td>
<td>-0.13</td>
<td>0.02</td>
<td>0.01</td>
<td>0.81</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Please cite this article as: Galí, M., Simó, R., Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge, Mar. Chem. (2010), doi:10.1016/j.marchem.2010.07.003
The above correlation includes data from both the surface (UML) and the fluorescence maximum, which did not seem to behave differently in terms of gross DMS production. The exception was Stn. 42 (surface), where a DMS production rate disproportionately high for the in situ DMSPt concentration was obtained. The ratio of gross DMS production (GP) to the DMSPt stock gives an estimate of the DMSPt fraction that was transformed daily by the cleavage pathway. GP/DMSPt was between 0.01 and 0.16 d⁻¹ at all stations, except at Stn. 42 (0.54 d⁻¹), where incubations were done in the light. Enhancement of DMS production as a result of high light or UV stress has been previously suggested by experimental results (Hefu and Kirst, 1997; Stefels, 2000; Sunda et al., 2002), and by model simulations (Toole et al., 2008; Vallina et al., 2008). Such stimulation by sunlight would support this suggestion.

The above correlation includes data from both the surface (UML) and the fluorescence maximum, which did not seem to behave differently in terms of gross DMS production. The exception was Stn. 42 (surface), where a DMS production rate disproportionately high for the in situ DMSPt concentration was obtained. The ratio of gross DMS production (GP) to the DMSPt stock gives an estimate of the DMSPt fraction that was transformed daily by the cleavage pathway. GP/DMSPt was between 0.01 and 0.16 d⁻¹ at all stations, except at Stn. 42 (0.54 d⁻¹), where incubations were done in the light. Enhancement of DMS production as a result of high light or UV stress has been previously suggested by experimental results (Hefu and Kirst, 1997; Stefels, 2000; Sunda et al., 2002), and by model simulations (Toole et al., 2008; Vallina et al., 2008). Such stimulation by sunlight would support this suggestion.

The above correlation includes data from both the surface (UML) and the fluorescence maximum, which did not seem to behave differently in terms of gross DMS production. The exception was Stn. 42 (surface), where a DMS production rate disproportionately high for the in situ DMSPt concentration was obtained. The ratio of gross DMS production (GP) to the DMSPt stock gives an estimate of the DMSPt fraction that was transformed daily by the cleavage pathway. GP/DMSPt was between 0.01 and 0.16 d⁻¹ at all stations, except at Stn. 42 (0.54 d⁻¹), where incubations were done in the light. Enhancement of DMS production as a result of high light or UV stress has been previously suggested by experimental results (Hefu and Kirst, 1997; Stefels, 2000; Sunda et al., 2002), and by model simulations (Toole et al., 2008; Vallina et al., 2008). Such stimulation by sunlight would support this suggestion.

Pooling together surface and fluorescence maximum incubations, gross DMS production and bacterial consumption rates appeared tightly coupled at most stations (r = 0.76, p < 0.001). From a temporal point of view, the rise in DMS production and, therefore, in DMS concentrations, would trigger the response of DMS consumers. DMS consumption rates did not seem to saturate at the highest DMS concentrations observed, and represented around 100% or more of the DMS produced in the fluorescence maximum (Table 2), and 80% in the UML (Fig. 6A). This coupling is a common feature of DMS cycling (see review by Simó, 2004) and has been observed in diverse systems and with varied methodological approaches. Looking at surface rates, however, we can see that some stations deviated from the general coupling pattern (Stn. 12 and 26; Fig. 6A). To explore which factors could explain this decoupling, a correlation table was calculated including K_{gp}, K_{bc}, and environmental variables (Table 5). Among the factors considered, we found a strikingly good correlation between K_{bc} and MLD (r = 0.81, p < 0.05, Fig. 6B). Considering that the MLD regulates the exposure of plankton to solar radiation, we hypothesize that bacterial DMS consumers were inhibited by sunlight at the stations with the shallowest MLD (Stn. 3, 12 and 26), thus decoupling DMS consumption rates from gross production rates. This agrees with previous works reporting severe photoinhibition of DMS consumption in different oceanic regions (Toole et al., 2006). However, if that was the case, why was K_{bc} not strongly correlated (r = -0.11, p > 0.10) to the previous 24 h solar exposure?

A possible response lies in the timespan used to calculate the UML-integrated irradiance, that is, how long we go back in time to define the radiative history of the microbial community. Taking into account that our incubations were conducted in the dark, and that bacterial recovery from photodamage can take place over hourly time scales (Kaiser and Herndl, 1997), the observed effects should have occurred through succession in the bacterioplankton community. Selection of photoresistant bacteria would operate in a time scale of days by reducing the numbers of the less photoresistant bacterial populations, eventually affecting the DMS consumers. However, limited knowledge on the taxonomy of DMS consumers (Vila-Costa et al., 2006a; Schäfer, 2007) hampers our understanding of their response to solar radiation. Alternatively, slow or lack of dark recovery in the biochemical machinery implicated in DMS metabolism could also cause the observed effect.

4.3. Links between ice-induced stratification and sulfur cycling

4.3.1. Short term DMS budgets and sea-air flux

DMS cycling is characterized by its fast turnover. Adding up the three main processes that remove DMS from the UML in stratified conditions (that is, bacterial consumption, photolysis and degassing to the atmosphere) a mean turnover time of 0.8 d was obtained for our cruise. Based on measured K_{bc}, $K_{photo,UML}$ and $K_{vent,UML}$, we calculated that the mean relative contribution to DMS removal by bacterial

<table>
<thead>
<tr>
<th>K_{bc}</th>
<th>K_{bc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.67*</td>
</tr>
<tr>
<td>Salinity</td>
<td>0.40</td>
</tr>
<tr>
<td>MLD</td>
<td>0.32</td>
</tr>
<tr>
<td>Sigma-t gradient pycnocline</td>
<td>0.48</td>
</tr>
<tr>
<td>Irradiance previous 24 h</td>
<td>0.04</td>
</tr>
<tr>
<td>DMS</td>
<td>0.04</td>
</tr>
<tr>
<td>DMSPt</td>
<td>0.75*</td>
</tr>
<tr>
<td>g_{p}</td>
<td>0.62</td>
</tr>
<tr>
<td>Bacterial production mm1 m</td>
<td>0.13</td>
</tr>
<tr>
<td>K_{bc}</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Please cite this article as: Galí, M., Simó, R., Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer recession of the ice edge, Mar. Chem. (2010), doi:10.1016/j.marchem.2010.07.003
consumption, photolysis and ventilation was 46%, 40% and 14% respectively. Fig. 7 shows that a shallower MLD (Stn. 26) caused simultaneously an increase in $K_{\text{photo},\text{UML}}$ as a consequence of enhanced solar radiation doses, an increase of $K_{\text{vent},\text{UML}}$ through the reduction of the volume of water exposed to wind stress, and a reduction of K_{bc} probably due to photoinhibition.

Another relevant information contained in Fig. 7 is that measured rates of gross DMS production were only able to supply 60–80% of the total DMS consumed. In our opinion, this imbalance suggests that gross DMS production was underestimated by dark DMDS amended incubations, a fact that was also suggested by the distinct behavior of the only light incubation performed (Stn. 42), as described above. Few works exist that report oceanic DMS budgets based on actual measurements of each of the processes involved, since normally one of them is calculated by budgeting upon assumption of steady state, a condition that approximately holds over a daily time scale. Due to methodological difficulties, gross DMS production is most frequently the indirectly calculated flux (e.g., Bailey et al., 2008). All in all, comprehensiveness makes our data more valuable, despite methodological shortcomings related to dark incubations and the inhibitor method.

Focusing now on the sea-air DMS flux, we see that the mean value in our cruise (6.5 µmol m⁻² d⁻¹) is above that reported for a cruise conducted in 1991 in a nearby region (2 µmol m⁻² d⁻¹; Leck and Persson, 1996). The same authors report DMS concentrations to decline, from a maximum of ca. 10 nM in early August, at a rate of 30% per week in the Arctic ice-margin region through August and September. Thus, our cruise probably took place during the time of the year when highest DMS emissions occur in the Fram Strait area. This timing of DMS emissions is different from that reported for the Barents sea, where the peak occurs earlier in the season because of earlier sea ice retreat (Matrai and Vernet, 1997; Gabric et al., 1999). However, the biogeochemical settings reported and simulated (respectively) in those studies differ significantly from ours, in that they found deeper mixing conditions and light limited phytoplankton growth.

Examining our flux calculations, it can be observed that seawater DMS concentrations and wind speed contributed almost equally to determine the DMS flux. But, did wind speed exert a more indirect influence on DMS cycling? With the help of stepwise linear regression, we found that wind speed alone (over the previous 24 h) explained 52% of the variance of the MLD ($p<0.01$, $n=16$). Adding to the model the strength of stratification at the base of the UML, the variance of the MLD explained increased to 71% ($p<10^{-3}$, $n=16$), indicating that

Fig. 7. Relative contribution of DMS loss processes to its removal from the UML, and comparison with the relative gross DMS production.

Fig. 8. Proposed conceptual scheme linking dimethylated sulfur dynamics with surface stratification and ice melt dynamics during the Phaeocystis bloom. Rectangles: chemical and biological stocks and concentrations (measured, except DMSair); diamonds: physical and chemical environmental forcings; ellipses: measured DMS fluxes (rates); round labels: sign of the interaction in the direction of the arrow; continuous lines represent connections that can be deduced from the data presented, or that were already well established; dashed lines represent proposed connections.

Please cite this article as: Galí, M., Simó, R., Occurrence and cycling of dimethylated sulfur compounds in the Arctic during summer receding of the ice edge, Mar. Chem. (2010), doi:10.1016/j.marchem.2010.07.003
meltwater indeed helped maintain the strong and shallow stratification conditions. In the paragraphs and sections above, we have emphasized the control exerted by the pycnocline in the supply of cells and detritus from the richer waters underneath, and the importance of the mixing depth for the balance between competing DMS sinks. Since sea-air flux was generally a minor sink for DMS in the UML, it might well be that wind exerted the greatest influence on DMS cycling through partially controlling mixing depths, rather than through direct DMS emission.

The discussion hitherto has addressed the factors that seemed to modulate DMS cycling processes in the short term according to observations. Our data capture a snapshot of the DMS cycle in the Arctic ice edge in the ice melt season, as summarized in Fig. 8.

4.3.2. Mid and long term
Short term DMS dynamics in any marine environment take place within a physico-chemical setting that influences cycling processes both directly and by driving plankton community composition and succession. In our study case, physical climatic forcing (ocean circulation, ice melting) drove water productivity and exposure to solar radiation, two factors with major influence in DMS cycling. A third factor with a particularly large importance was the presence of P. pouchetii. The success of this species may be due to a number of features. Among them, its ability to avoid grazers through colony formation, and its ability to thrive in shallow-mixed, ice-stratified, and highly irradiated waters seem key properties (Schoeman et al., 2005). Our observation of marked absorption peaks around 330 nm in CDOM spectra, which probably indicates leakage of mycosporine-like aminoacids from algal cells during GF/F filtration (Jeffrey et al., 1999) supports the importance of photoprotective mechanisms in ice-stratified waters. In addition, DMSP and its degradation compounds DMS and DMSO may constitute an important physiological adaptation to cope with radiative stress or nutrient-demand-unbalanced growth (Stefels, 2000; Sunda et al., 2002). It turns out that any change in environmental conditions able to modify the strength, duration and extent of the ice edge Phaeocystis bloom, will have a strong impact on sulfur biogeochemistry in the Arctic, and on its role as an atmospheric DMS source.

During summer 2007, a historical minimum of Arctic sea ice was observed, together with an abnormal atmospheric circulation pattern and a deeper northwards penetration of Atlantic Waters. A sea ice-free Arctic summer is envisaged within the next few decades (Stroeven et al., 2008). Garib et al. (2005) predicted a 90% increase in Arctic DMS emissions (in a scenario of atmospheric CO2 tripling by 2080) as a result of a larger ice-free area and a longer growth season. This would represent a significant DMS-derived cooling effect. However, the numerical model used in that work appears too simple to capture the complex dynamics and spatial heterogeneity of the Arctic ecosystem. In summary, great changes in Arctic biogeochemistry (including volatile sulfur emissions) are likely to occur yet remain difficult to predict.

5. Conclusions
During July 2007, dimethylated sulfur dynamics in the Greenland Sea and Arctic Ocean were basically driven by phytoplankton biomass, i.e., the “bloom regime” postulated by Toole and Sigefield (2004) as opposed to the (UV) stress regime found in oligotrophic regions. High potential for elevated summertime DMS concentrations and emissions did exist, owing to the dominance of P. pouchetii, but they were constrained by the fast photochemical and bacterial DMS consumption in the UML. Our findings portray a highly buffered system: vertical mixing causes alternation among DMS loss processes, preventing exaggerated consumption or build up.

Differences in DMS, DMSp and DMSot concentrations at the ocean surface resulted from the complex interaction of biological processes and physical (ultimately meteorological) forcing. Ice melting added complexity to the usual open-sea picture of DMS cycling, and created an isolated layer of fresher and colder water that acted as a highly irradiated trap for organisms and molecules, episodically entrained from below, and as a lid on the more productive waters underneath. This thin UML played a key role in regulating the flux of DMS to the atmosphere.

Acknowledgements
We thank the chief scientist of the ATOS1 cruise, C.M. Duarte, the marine technicians (UTM) and the crew aboard the BIO Hesperides for their assistance and cooperation. We also thank J.M. Arrieta and A. Tovar-Sánchez for collecting surface samples, and A. Calbet, D. Vaqué and S. Lasternas for sharing unpublished biological data. The work of 2 anonymous reviewers, as well as proofreading by B. Tomlinson, helped improve the manuscript. This work was supported by the Spanish Ministry of Science and Innovation through the IPY project ATOS (POL2006-00550/CTM) and the project SUMMER (CTM2008-03309). M.G. acknowledges the receipt of a JAE PhD scholarship from the CSIC. This is a contribution of the Research Group on Marine Biogeochemistry and Global Change, supported by the Generalitat de Catalunya.

References